An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation
نویسندگان
چکیده
Replicative stress (RS) is a type of endogenous DNA damage that cells suffer every time they duplicate their genomes, and which is further boosted by oncogenes. In mammals, the RS response (RSR) is coordinated by ATR and Chk1 kinases. We sought to develop a mammalian organism that is selectively protected from RS. To this end, mice carrying an extra copy of the Chk1 gene were generated. In vitro, Chk1 transgenic cells are protected from RS-inducing agents. Moreover, an extra Chk1 allele prolongs the survival of ATR-Seckel mice, which suffer from high levels of RS, but not that of ATM-deficient mice, which accumulate DNA breaks. Surprisingly, increased Chk1 levels favor transformation, which we show is associated with a reduction in the levels of RS induced by oncogenes. Our study provides the first example where supra-physiological levels of a tumor suppressor can promote malignant transformation, which is a result of the protection from the RS found in cancer cells.
منابع مشابه
Wee1 and Chk1 – crosstalk between key players in replicative stress
Replicative stress is a tumor cell-associated feature that includes the accumulation of stalled or collapsed replication forks. With the DNA polymerases lagging behind the helicases, these structures contain extended regions of single stranded DNA, leading to the activation of a damage signaling pathway that includes the kinases Ataxia Telangiectasia Mutated-Related (ATR) and Chk1. The specific...
متن کاملDDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress.
The Chk1 protein kinase preserves genome integrity in normal proliferating cells and in cells experiencing replicative and genotoxic stress. Chk1 is currently being targeted in anticancer regimens. Here, we identify damaged DNA-binding protein 1 (DDB1) as a novel Chk1-interacting protein. DDB1 is part of an E3 ligase complex that includes the cullin proteins Cul4A and Cul4B. We report that Cul4...
متن کاملTargeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress
Radiotherapy (RT) remains a standard therapeutic modality for breast cancer patients. However, intrinsic or acquired resistance limits the efficacy of RT. Here, we demonstrate that CHK1 inhibitor AZD7762 alone significantly inhibited the growth of radioresistant breast cancer cells (RBCC). Given the critical role of ATR/CHK1 signaling in suppressing oncogene-induced replication stress (RS), we ...
متن کاملThe stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase
CDT2/L2DTL/RAMP is one of the substrate receptors of the Cullin Ring Ubiquitin Ligase 4 that targets for ubiquitin mediated degradation a number of substrates, such as CDT1, p21 and CHK1, involved in the regulation of cell cycle and survival. Here we show that CDT2 depletion was alone able to induce the apoptotic death in 12/12 human cancer cell lines from different tissues, regardless of the m...
متن کاملCHK1 activity is required for continuous replication fork elongation but not stabilization of post-replicative gaps after UV irradiation
Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine--inhibiting ATM and ATR amongst other kinases--is explained by inability to activat...
متن کامل